DREAM.

Surface hydration and solar wind bombardment of the Moon

Dana M. Hurley Dana. Hurley @jhuapl.edu

William M. Farrell William.M.Farrell@nasa.gov

Acknowledgments:
NASA Lunar Science Institute

- Cassini VIMS data are consistent with migrating H₂O adsorbed to colder parts of lunar surface
 - H2O

- Chandrayaan-1 M³ data consistent with H₂O adsorbed on mid-high latitude regions of lunar surface
 - Unclear in McCord et al., 2011 if 3 µm band exists at low latitude near the terminator in M³ data
 - Similar to Cassini, show decreased band depth on mare.

McCord et al., JGR, 2011

Sunshine et al., Science, 2009

- EPOXI data indicate a change in band depth with incidence angle
- Interesting to note that the Moon was likely in the Earth's magnetotail for 2nd observation (on June 9, 2009)

- See Amanda Hendrix's talk at 9:45 today
- Water absorption edge exists in FUV spectrum at 165 nm
- LRO LAMP data are consistent with a latitudinal dependence on the band strength of hydration (greater strength at higher latitude)
- Within a latitude band, there is a dependence of band strength on beta angle (minimum strength at β =0°), especially at low latitude

Step 1—Solar Wind Implantation

- Solar wind protons are one possible source of hydrogen for OH/H₂O
 - Protons penetrate ~200 Å
 - Damages lattice
 - Hydroxyl formation

Solar Wind (SW) Delivery Rate

- Available water over a lunation
 - Flux 3e8 p⁺cm⁻²s⁻¹
 - Fluence 1.8e14 p⁺/cm²
 - Assume 100% conversion to water
 - Global layer 0.29 Å H₂O
 - For 1000 ppm, 160 Å
 - For 1 µm thickness,16 ppm

Diurnal Changes—Solar Wind Limits

- Changes equivalent to ~100 yrs. worth of solar wind on a diurnal basis would be required to produce an observable diurnal signal
 - This rules out direct implantation of solar wind to explain the variations in band depth with local time
 - Photometric effects may still produce a change in band depth with local time
 - Migration may still produce a diurnal change in band depth

Diffusing

SW delivery

Steady state concentration, diffusing OH

- The balance between influx and diffusing, implanted solar wind protons as a function throughout a lunation
- High latitude—buildup from lunation to lunation
- Low latitude, diurnal signature

Steady state concentration, diffusing OH

Step 2-Migrating Flux

- Monte Carlo model of migration pattern of H₂O
- Each particle takes an average of 30 hops—boosts flux
- Migration redistributes particles to higher solar zenith angles
- Still have the peak flux at the equator

Step 3-Surface Residence

Migrating vs. diffusing concentrations

Conclusions—OH

- Incident flux competes with diffusion rate to determine the steady state concentration of OH in the lunar regolith
 - Where diffusion is slower than a lunation, a buildup can occur and the density is pretty flat diurnally
 - Where diffusion is faster than a lunation, some buildup can occur near the terminator, diurnal changes in concentration would occur
 - Solar wind does not provide sufficient source of H to produce observable diurnal variation in OH concentration

Conclusions—H₂O

- Migrating water vapor would accumulate on the surface
- Simulations reproduce latitudinal/diurnal distribution
 - Dayside residence determined by sublimation
 - Nightside residence determined by photon stimulated desorption
 - Increase in dayside residence time needed to bring model in agreement with observations, both to get density high enough and to suppress dawn enhancement

Diffusion Simulations

- Varied diffusion parameters
 - Activation energy
 - Diffusion coefficient
- Cannot reproduce an observable diurnal difference
- Produces latitudinal difference

Lunar Albedo Swirls

- Regions where magnetic anomalies exist demonstrate interesting characteristics:
 - High albedo swirls
 - Proton reflection (Saito et al., 2008)
 - ENA void (Wieser et al., 2009)
 - Low absorption at 2.8 µm (Kramer et al., 2011)
- Consistent with reduced maturity caused by magnetic fields diverting the incident solar wind flux

Latitudinal Changes—Solar Wind Limits

- Time to reach saturation is longer at high latitude than low latitude
- Temperature is colder at high latitude
 - Perhaps a limiting process in the OH concentration is temperature-dependent
 - Diffusion
 - Adsorption

Step 1-Solar Wind Implantation

- Solar wind protons are one possible source of hydrogen for OH/H₂O
 - Protons penetrate ~200 Å
 - Radiation damages lattice
 - Hydroxyl formation
- Saturation levels achieved faster than the regolith turnover time
- Perhaps there are two components, a physisorbed H₂O and a chemisorbed OH.

10-1000 ppm OH—Solar Wind Limits

- Lab indications are that saturation levels achieved for fluence of 10¹⁸ p⁺/cm² (Managadze et al., 2011; Blanford et al., 1986)
 - Achieved in ~1000 yr. at equator
- Equatorial regolith samples (Apollo samples) contain implanted solar wind elements
 - Concentration is surface correlated
 - Saturation level is 50-100 ppm H
 - composition dependent
 - If H is in form of OH, this is equivalent to 850-1700 ppm

